Inborn errors of metabolism in the child with developmental delay

Dr. Maureen Cleary
Consultant Metabolic Paediatrician
Outline of talk

• Developmental delay

• Inborn errors of metabolism causing DD

• Clinical features suggest IEM

• Useful investigations
“Developmental delay”

• Definition
 - significant
 • two standard deviations below the mean of accepted developmental testing

• Incidence of developmental disabilities
 - 5-10% of childhood population
Definitions

• Global Dev delay in infants/young children
 - 1-3% of children < 5 years

• Mental retardation > five years (once IQ testing more reliable)
Paediatric assessment

• History

• Examination
 – Characterise the pattern of delay
 • Single domain
 • Multiple domains
 – Systematic examination

• Aetiology confirmed in almost 20%
<table>
<thead>
<tr>
<th>Cause</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome abnormalities</td>
<td>4-28</td>
</tr>
<tr>
<td>Recognizable syndromes</td>
<td>3-7</td>
</tr>
<tr>
<td>Known monogenic conditions</td>
<td>3-9</td>
</tr>
<tr>
<td>Structural CNS abnormalities</td>
<td>7-17</td>
</tr>
<tr>
<td>Complications of prematurity</td>
<td>2-10</td>
</tr>
<tr>
<td>Environmental/teratogenic</td>
<td>5-13</td>
</tr>
<tr>
<td>'Cultural-familial' mental retardation</td>
<td>3-12</td>
</tr>
<tr>
<td>Provisional unique, monogenic syndromes</td>
<td>1-5</td>
</tr>
<tr>
<td>Metabolic/endocrine causes</td>
<td>1-5</td>
</tr>
<tr>
<td>Unknown</td>
<td>30-50</td>
</tr>
</tbody>
</table>
IEM as cause of dd

- **Not** common cause of ‘pure’ dd
 - 1%

- usually other features to suggest IEM

- however

 some IEM will present as pure dd
IEM as cause of delay

• **IMPORTANCE**

 - recurrence risk
 - prevention of metabolic crisis
 - there may be specific treatment
Which IEM’s can cause dd?

• Neurodegenerative disorders
 • lysosomal storage
 • peroxisomal storage
 • mitochondrial disease

• Toxic brain metabolites (acute)
 • organic acidurias
 • urea cycle defects
Which IEM’s can cause dd?

• Toxic brain metabolites (chronic)
 - non-ketotic hyperglycinaemia
 - phenylketonuria
 - galactosaemia

• Structurally abnormal brain
 - Smith-Lemli-Opitz
 - Disorder of carbohydrate glycoprotein
Developmental delay: establishing a cause

- HISTORY & EXAMINATION
 - 19%
- plus LABORATORY TESTS
 - 50%

 - cytogenetic/molecular 35%
 - EEG 8%
 - Neuroimaging 6%
Clinical features of IEM’s:

History

• Birth and prenatal
 - birth often normal in IEM

• family history
 • previous neonatal death
 • parental consanguinity
Clinical features: history

• past medical history
 • accompanying unusual episodes
 - hypoglycaemia
 - acute encephalopathy
 - very unwell with seemingly mild illness
 • unusual behaviour
 - protein aversion
 - ‘psychiatric’
Clinical features of IEM’s

- History of developmental delay
 - developmental regression*
 - single domain
 - motor
 - language
 - multiple domain
Developmental regression

• Strongly suggestive of IEM

 - lysosomal
 - peroxisomal
 - mitochondrial
Problems in interpretation clinical features

• early fatal disease before appreciable cerebral maturation has occurred

• extremely chronic disease where it is unclear if there is regression

• abrupt onset confused with infectious processes
Problems in interpretation clinical features

• intercurrent illness, seizures or drug therapies affect assessment

• manifestations of earlier nonprogressive lesions evolve
Lysosomal storage disorders

• Demyelination
 - infancy
 - early childhood
 - long-tract signs
 - clumsiness
 - MRI leucodystrophy
 - rapid progression

• KRABBE
• METACHROMATIC LEUCODYSTROPHY
Lysosomal storage disorders

• Direct storage
 - slower onset of neurology
 - developmental delay
 - leading to regression
 - hydrocephalus

• MUCOPOLYSACCHARIDOSIS
Peroxisomal Disorders

• **Group I**
 - failure of biogenesis of peroxisomes
 - **ZELLEWGER (CEREBRO-HEPATO-RENAL)**

• **Group II**
 - problems in biogenesis of peroxisomes but recognisable peroxisomes
 - **RHIZOMELIC CHONDRODYSPLASIA PUNCTATA**
 - **ZELLEWGER-LIKE SYNDROME**

• **Group III**
 - peroxisomes present
 - **X-LINKED ADRENOLEUCODYSTROPHY**
 - **CLASSICAL REFSUM**
Mitochondrial disorders

- any system
- any inheritance
- any age
Mitochondrial disorders

- Affect grey and white matter
- other suggestive signs
 - cardiomyopathy
 - eye signs (ret pig, cataract, ptosis)
 - muscle disease
 - haematological
 - liver disease
The A to Z of Mitochondrial Symptoms

- Aminoglycoside deafness
- Bone marrow dysfunction
- Cardiomyopathy
- Diabetes
- **Episodic** vomiting
- Fever
- Gastrointestinal Motility
- Hepatomegaly
- **Idiopathic** dystonia
- Jaundice
- Kidney dysfunction
- Lipomas
- Malformations

- Neuropathy
- Optic atrophy
- **Progressive** organ involvement
- Questionable diagnosis
- Retinitis pigmentosa
- Seizures
- Tachypnea
- Unexplained assoc symptoms
- Vascular abnormalities
- Wasting
- Xertional myoglobinuria
- Yucky outlook
- Zestless
Mitochondrial disease

- **LEIGH DISEASE** or **LEIGH-LIKE SYNDROME**
 - can be slow onset regression
 - episodic hyperventilation
 - basal ganglia changes
Clinical features associated with IEM

• Examination
 - Growth
 - Appearance
 - Organomegaly
 - Smell
 - Neurological findings
Clinical features associated with IEM

• GROWTH

 - failure to thrive common
 - head circumference
 • microcephaly
 • macrocephaly
Clinical features associated with IEM

• Examination
 - Growth
 - Appearance
 - Organomegaly
 - Smell
 - Neurological findings
Clinical features of IEM: Examination findings

• Appearance
 - eyes
 - hair
 - skin
 - dysmorphic
Clinical features of IEM: Exam

• Eyes
 - cataract
 - peroxisomal disorders
 - homocystinuria
 - gyrate atrophy of choroid and retina
 - (galactosaemia)
 - corneal clouding
 - mucopolysaccharidosis
 - cherry red spot
 - neurolipidoses
Clinical features of IEM: Exam

- Hair
 - coarse
 - mucopolysaccharidosis
 - kinky
 - Menkes disease
Clinical features of IEM: Exam

• Skin
 - thickened, coarse
 • MPS
 • Refsum’s disease
Clinical features of IEM: Exam

- Dysmorphism
 - Smith-Lemli-Opitz
 - Carbohydrate deficient glycoprotein disorders
 - MPS
 - Menkes
 - Peroxisomal
Clinical features of IEM: Examination findings

• Examination
 - Appearance
 - Organomegaly
 - Smell
 - Neurological findings
Clinical features of IEM: organomegaly

- Hepatomegaly/splenomegaly
 - Gauchers
 - Niemann-Pick
 - other storage disorders
Clinical features of IEM: Examination findings

- Examination
 - Appearance
 - Organomegaly
 - Smell
 - Neurological findings
Clinical features of IEM: exam

- Smell
 - sweaty feet
 - isovaleric aciduria
 - maple syrup urine
 - maple syrup urine disease
Clinical features of IEM: Examination findings

- Examination
 - Appearance
 - Organomegaly
 - Smell
 - Neurological findings
Clinical examination: neurological findings

- Hypotonia
- Hypertonia
- Dystonia
- Macrocephaly
- Microcephaly
Clinical examination: neurological findings

• Hypotonia
 - muscle disorders
 - initial phase of neurological regression

• Hypertonia
 - neurodegenerative disorders
Clinical examination: neurological findings

• Dystonia
 - neurotransmitter defects
 - mitochondrial disorders
 - glutaric aciduria type I
 - Wilson’s disease
Clinical examination: neurological findings

• Macrocephaly
 - CANAVAN
 - L-2 HYDROXYGLUTARIC ACIDURIA
 - GLUTARIC ACIDURIA TYPE I
 - TAY-SACHS
Clinical examination: neurological findings

- Microcephaly
 - SULFITE OXIDASE DEFICIENCY
 - MATERNAL PKU
 - AS RESULT OF NON-SPECIFIC DAMAGE
Developmental delay

- No historic clues
- No regression
- No examination abnormalities (apart from dd)

- Which disorders may cause this picture?
Developmental delay

- Propionic/methylmalonic acidaemia
- D-2 or L-2 hydroxyglutaric aciduria
- 4-hydroxybutyric aciduria
- Urea cycle disorders
- Homocystinuria
- Creatine deficiency
- Sanfilippo Disease
Developmental delay

• Which investigations should be carried out in dd without other specific features?

• No consensus
Investigations global delay; no clues

- **Blood**
 - CK
 - FBC
 - U/Es
 - LFTs
 - TFT
 - Lactate
 - Ammonia
 - Urate
 - Amino acids

- **Urine**
 - Amino acids
 - Organic acids
 - glycosaminoglycans
Interpretation of results

• **CK**
 - Fatty acid oxidation disorders, muscle disease

• **Lactate**
 - Erroneous
 - Gluconeogenetic disorders
 - Pyruvate metabolism
 - Mitochondrial disorders

• **Ammonia**
 - Urea cycle
 - Liver dysfunction
 - Erroroneous

• **Urate**
 - Glycogen storage
 - Purine disorders
 - Molybdenum cofactor deficiency
Developmental delay without clues

• Importance of serial evaluation

• Diagnoses increase 5-20% with return visits
 - two visits in first year of life
 - yearly until early school years
 - re-evaluation during puberty
Summary

• Several IEM’s are associated with dd

• Neurological regression makes IEM very likely

• If no specific features IEM unlikely

• Laboratory tests necessary for diagnosis