Post mortem investigation of Inherited Metabolic Disease
- the last opportunity for a diagnosis -

Dr Simon Olpin
Lead Clinical Scientist
in Inherited Metabolic Disease
Sheffield Children’s Hospital
SIDS/SUDI

- Incidence 1:1000 live births
- 25% of deaths in the first year of life
- Precise cause remains unexplained in ~80% of cases
- 3-6% due to inherited metabolic disease
Metabolic causes of SIDS

- Fatty acid oxidation defects
 - e.g. MCAD
- Urea cycle disorders
 - e.g. OTC
- Organic acidurias
 - e.g. MMA, PA, IVA
- Congenital lactic acidosis
 - e.g. PDH, respiratory chain defects
- Carbohydrate disorders
 - e.g. galactosaemia, GSD type I
How can we investigate possible IEM after death?

- Urine - Organic acids
- Eye fluid e.g. 7(OH)octanoate
- Acylcarnitine profiling by MS/MS
 - DBS
 - Bile
 - CSF
- Fibroblast studies
 - DNA – not usually indicated
Acylcarnitines: key diagnostic metabolites

- Acylcarnitines reflect Acyl-CoAs accumulating upstream of a metabolic block – reversible conversion by the action of carnitine acyl transferases.

\[
\text{ACYL-CoA} + \text{carnitine} \xleftrightarrow{\text{ENZYME}} \text{ACYL-carnitine} + \text{CoA}
\]

- Profiles mainly in dried blood spots, plasma, bile & CSF

- History: profiling achieved by a variety of techniques - GC, HPLC, GCMS [>30 mins per sample] - FAB-MS/MS (1990s), and then Electrospray (ESI-MS/MS) (2 mins per sample)
QuattroLC MS/MS
‘Parents of 85’..quantitative profile by stable isotope dilution (8 internal standards*).

- **MS2** – fixed-focus on m/z 85
- **MS1** - SCAN m/z 200 - 520

OUTPUT SIGNAL
‘Parents of 85’ ..quantitative profile by stable isotope dilution.

8 stable isotopically labelled Acylcarnitines added as ‘Internal Standards’

d3-C0 = 37µM
d3-C2 = 9.2µM
d3-C3&4 = 1.8µM
d9-C5 = 1.8µM
d3-C8 = 1.8µM
d9-C14 = 1.8µM
d3-C16 = 3.7µM
How can we investigate after death?

- Consider going straight to fibroblast studies if:
 - No blood / bile taken at PM
 - but strong evidence / family history of IMD
 - e.g. fat deposition in renal tubule cells
 - or pre-mortem samples suggest IMD

- Fibroblasts
 - Flux assays
 - Acylcarnitine profiling
 - Specific enzyme assays e.g. GAI
Establishing Normal Post Mortem Reference Ranges for acylcarnitines

- **Very little data available in literature**
 - One large study ~7000 samples
 - Chace et al 2001 (USA & Canada)

- **BUT**
 - Little hard data on confirmation of “presumed” diagnoses
 - Exception - MCAD
Chace et al 2001 (US & Canada)

- Established reference ranges for a range of acylcarnitine species C0 – C16
- 855 DBS & 30 bile spots

- Very wide reference ranges (µmol/L)
 - C8 0.02-1.03 in DBD
 - C8 0.47 – 24 in bile
 - Contrast DBS for Newborn screening C8 < 0.3

- Also suggested some diagnostic ratios
 - e.g. C8/C10 in MCAD, C14:1/C12:1 in VLCAD
Chace et al - Findings

- 66 specimens suggested a metabolic disorder
- 23 MCAD (most confirmed by mutation)
- 9 VLCAD (very-long chain acyl-CoA)
- 8 Multiple acyl-CoA dehydrogenase deficiency (MADD)
- 6 CPTII/CACT (carnitine palmitoyltransferase type II)
- 4 Primary carnitine deficiency
- 4 LCHAD/TFP (Long-chain 3-hydroxyacyl-CoA dehydrogenase)
- 3 glutaric acidaemia type I (GAI)
- 4 Isovaleryl-CoA dehydrogenase deficiency
- 5 MMA/PA, MSUD
Data from Sheffield/Bristol/Leicester

- 2004 – 2007
- ~120 PM Dried Blood Spots
- ~40 Bile samples
- ~20 CSF samples
<table>
<thead>
<tr>
<th></th>
<th>Postmortem DBS (n = 56) Median (Range)</th>
<th>Postmortem BILE (n = 26) Median (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>215.47 (11.58 – 554.90)</td>
<td>302.51 (51.8 – 1004.)</td>
</tr>
<tr>
<td>C0</td>
<td>141.92 (7.16 – 423.65)</td>
<td>205.36 (5.45 – 533.28)</td>
</tr>
<tr>
<td>C4</td>
<td>5.3 (0.19 – 17.60)</td>
<td>2.63 (0.29 - 20.24)</td>
</tr>
<tr>
<td>C5:1</td>
<td>0.08 (0.01 – 0.35)</td>
<td>0.28 (0.08 - 2.11)</td>
</tr>
<tr>
<td>C5-OH</td>
<td>0.36 (0.04 – 1.2)</td>
<td>0.51 (0.14 - 1.15)</td>
</tr>
<tr>
<td>C8</td>
<td>0.18 (0.02 – 0.86)</td>
<td>0.53 (0 – 51.47)</td>
</tr>
<tr>
<td>C10:1</td>
<td>0.06 (0.02 – 0.24)</td>
<td>0.59 (0 – 50.4)</td>
</tr>
<tr>
<td>C10</td>
<td>0.1 (0.02 – 0.81)</td>
<td>0.59 (0 – 39.01)</td>
</tr>
<tr>
<td>C5-DC</td>
<td>0.16 (0.02 – 0.62)</td>
<td>0.40 (0 – 1.5)</td>
</tr>
<tr>
<td>C14:1</td>
<td>0.09 (0.02 – 0.32)</td>
<td>0.35 (0.03 – 13.23)</td>
</tr>
<tr>
<td>C14</td>
<td>0.18 (0.02 – 0.62)</td>
<td>0.32 (0.05 – 3.61)</td>
</tr>
<tr>
<td>C16</td>
<td>0.74 (0.1 - 2.41)</td>
<td>0.60 (0.09 - 5.52)</td>
</tr>
<tr>
<td>C16-OH</td>
<td>0.045 (0.01 - 0.14)</td>
<td>0.16 (0.03 – 1.98)</td>
</tr>
<tr>
<td>C18:1</td>
<td>0.79 (0.14 – 2.89)</td>
<td>0.70 (0.09 - 4.31)</td>
</tr>
<tr>
<td>C8/C10</td>
<td>1.53 (0.33 – 6.3)</td>
<td>0.80 (0 – 3.33)</td>
</tr>
</tbody>
</table>
Typical post mortem bile

C8 = 1.84 µmol/l
C10:1 = 2.7
C10 = 3.7
C12 = 6.8
C12:1 = 6.9
C14:1 = 12.9
C14 = 3.3
C14:1/C12:1 = 1.9
Typical PM DBS

- C0 = 228
- C2 = 120
- C3 = 3
- C4 = 6
- C4(OH) = 2.8
- C6 = 0.8
Unwell from day 3
Brought into hospital - died soon after

- PM showed extensive fatty change –
- No Skin biopsy obtained
- PM blood - only
CPT2 deficiency

C16 = 14.6 µmol/L (<3.4)

C18:1 = 3.4 µmol/L (<2.7)

C14:1 = 1.52 µmol/L (<0.53)
Medium chain acyl-CoA dehydrogenase deficiency MCAD

Natural history of this disease

- Well at birth
- Sudden decompensation during intercurrent infections / fasting during early infancy/childhood
- Hypoglycaemia, hepatomegaly, encephalopathy, seizures
- Easily treated with avoidance of fasting/emergency regimen during infection
Acylcarnitines in neonatal blood spot in MCAD

C8 in the newborn period raised... 1.13µM (ref. <0.30)

DIAGNOSIS ... MCAD
Post mortem sample

C8 ~ 8.4 μm/L (PM <0.86)

C8/C10 = 11.3 (PM <6.3)

Medium Chain Acyl-CoA Dehydrogenase Deficiency
Post mortem sample

BILE

C8 ~ 200µm/L (PM <52)

C10:0 ~ 35 µm/L

C8/C10 = 5.7 (PM <3.3)

Medium chain acyl-CoA dehydrogenase deficiency
Glutaryl CoA dehydrogenase deficiency (GA1)

LYSINE

TRYPTOPHAN

2-ketoadipate

Glutaryl CoA

Glutaryl carnitine (C5DC)

(3-[OH]G)

(Glutaconyl CoA)

Crotonyl CoA

Acetoacetate
May exhibit: macrocephaly, fronto-temporal atrophy, acute encephalopathic crisis, dystonia, sub-dural haematoma...

Patient

C5-DC (glutaryl carnitine)

Normal
Post mortem sample

Glutaryl-CoA Dehydrogenase Deficiency

C5 DC ~7.2μm/L

PM control <0.62
Post mortem sample

Glutaryl-CoA Dehydrogenase Deficiency

C5 DC ~11.0μm/L
Branched chain amino acid metabolism: 3-KETOTHIOASE DEFICIENCY.

VALINE
- 2-ketovalerate
- Isobutyryl-CoA
- Methacrylyl-CoA
- 3-hydroxyisobutyrate
- Methylmalonylsemialdehyde
- Propionyl-CoA
- Methylmalonyl-CoA

ISOLEUCINE
- 2-keto-3-methylvalerate
- 2-methylbutyryl-CoA
- C5:1
- C5-OH
- 2-methyl-3-hydroxybutyryl-CoA
- 2-methyl-3-ketobutyryl-CoA

LEUCINE
- 2-ketoisocaproate
- Isovaleryl-CoA
- 3-methylcrotonyl-CoA
- 3-methylglutaconyl-CoA
- 3-HMG-CoA

TCA CYCLE
- Acetyl-CoA
- Acetoacetate
- Succinyl-CoA
- TCA CYCLE
Symptoms: recurrent episodes of ketoacidosis

Patient

C5:1
C5(OH)

Normal
Post mortem sample

Beta Ketothiolase Deficiency (Twin 1)

C5:1 = 0.6 µm (PM <0.35)
C5(OH) =2.5 µm (PM 0.04 -1.2)
Sample from surviving Twin

C5:1 ~ 0.47 µm(<0.02)
C5:OH ~ 0.83 µm(<0.05)
PM DBS SIDS day 2

C16(OH) = 2.2 µmol/l <0.1
C18:1(OH) = 1.23 µmol/L <0.1
- **Fatty acid oxidation**
 - Myristate = 42%
 - Palmitate = 27%
 - Oleate = 16%
- **Common G1528C LCHAD mutation – not found**
- **LCHAD – 36 (34-114) nmol/mg/min**
- **LC thiolase – 2 (58-110)**
- **HADHB gene c.1292T.C plus c.1301C>T**
- **Mitochondrial Trifunctional Protein deficiency**
<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory chain defect</td>
<td>15</td>
</tr>
<tr>
<td>Multiple acyl-CoA dehydrogenase defect (severe)</td>
<td>12</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase defect</td>
<td>10</td>
</tr>
<tr>
<td>Carnitine palmitoyltransferase deficiency Type II</td>
<td>8</td>
</tr>
<tr>
<td>Very long-chain acyl-CoA dehydrogenase defect</td>
<td>7</td>
</tr>
<tr>
<td>Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency</td>
<td>7</td>
</tr>
<tr>
<td>Carnitine-acylcarnitine translocase</td>
<td>4</td>
</tr>
<tr>
<td>Mitochondrial trifunctional protein deficiency</td>
<td>4</td>
</tr>
<tr>
<td>Fumarate hydratase deficiency</td>
<td>2</td>
</tr>
<tr>
<td>Methylmalonic aciduria</td>
<td>2</td>
</tr>
<tr>
<td>Zellweger spectrum</td>
<td>2</td>
</tr>
<tr>
<td>Argininosuccinic aciduria</td>
<td>1</td>
</tr>
<tr>
<td>Carnitine palmitoyltransferase deficiency type I</td>
<td>1</td>
</tr>
<tr>
<td>Glutaric aciduria type I</td>
<td>1</td>
</tr>
<tr>
<td>Glutathione synthase deficiency</td>
<td>1</td>
</tr>
<tr>
<td>GSD IV</td>
<td>1</td>
</tr>
<tr>
<td>Isovaleric acidaemia</td>
<td>1</td>
</tr>
<tr>
<td>Congenital disorder of glycosylation type 1</td>
<td>1</td>
</tr>
<tr>
<td>Primary carnitine deficiency</td>
<td>1</td>
</tr>
<tr>
<td>Pyruvate dehydrogenase deficiency</td>
<td>1</td>
</tr>
<tr>
<td>X-linked adrenoleucodystrophy</td>
<td>1</td>
</tr>
<tr>
<td>Total diagnoses</td>
<td>83</td>
</tr>
<tr>
<td>Total number of post mortem cell lines</td>
<td>1211</td>
</tr>
</tbody>
</table>
Multiple acyl-CoA dehydrogenase deficiency MADD

- Defect of fatty acid & amino acid catabolism
- Severe neonatal / infantile /milder phenotype
- Hypoglycaemia, acidosis, hypotonia, liver disease, cardiomyopathy
The Biochemical defect in MADD

Ketone bodies

Acetyl-CoA

S

SH₂

EFAD

EFAD₂

ETFox

ETF red

Very-long-chain acyl-CoA DH
Medium-chain acyl-CoA DH
Short-chain acyl-CoA DH
Long-chain acyl-CoA DH
Acyl-CoA DH-9

Short/branched-chain acyl-CoA DH
Isobutyryl-CoA DH
Isovaleryl-CoA DH
Glutaryl-CoA DH

Dimethylglycine DH
Sarcosine DH

Fatty acid metabolism

Amino acid metabolism

Choline metabolism

TCA

I

II

III

IV

V

H⁺

ADP

ATP
MADD plasma

Plasma from a child with moderate/severe MADD

MADD or GA2
• Appeared normal at birth
• Sent home on day 1
• Died during car journey home
Post mortem sample

MADD

C4 ~19.2 μm/L (<17.6)

C16:0 ~10 μm/L (<2.4)

DBS

C5 ~ 13.7 μm/L (<3.4) leucine, isoleucine

C5 DC ~ 9.6 μm/L (<0.62) lysine

C14 ~ 1.8 μm/L (<0.62)
Tritium release from labelled $[9,10-^3H]$ substrates

$[9,10-^3H]$Myristic acid (C14:0)
CH$_3$ CH$_2$ CH$_2$ CH$_2$ CH$_2$* CH$_2$* CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ COOH

$[9,10-^3H]$Palmitic acid (C16:0)
CH$_3$ CH$_2$ (CH$_2$)$_3$ CH$_2$ CH$_2$* CH$_2$* CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ COOH

$[9,10-^3H]$Oleic acid (C18:1)
CH$_3$ (CH$_2$)$_5$ CH$_2$ CH$_2$ CH* CH* CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ CH$_2$ COOH
Confirmation in fibroblasts MW

- Myristate = 3%
- Palmitate = 3%
- Oleate = 2%
- % of simultaneous normal controls
- Consistent with severe MADD
% residual activity for M/P/O for various FAOD’s

Pattern recognition in FAO

Severe MADD
Two subsequent prenatals on amniotic fluid / cultured amniocytes
- 1 affected
- 1 unaffected
MK 14/12/04

- Sudden death at 3 days
- PM findings
 - gross deposition of fat in liver
 - fat deposition in renal tubules
MK 14/12/04

- Fatty acid oxidation flux in cultured fibroblasts (% of controls)
 - Myristate 5%
 - Palmitate 1%
 - Oleate 8%
 - Octanoate 196%
 - β-oxidation is intact for medium chain substrates which are independent of the carnitine cycle (CPTI, CPTII, CAT)
% residual activity for M/P/O for various FAOD’s

Pattern recognition in FAO

Carnitine cycle defects
CPTI, CPTII, CAT
Fibroblast Acylcarnitine Profiling

- Non-radioactive methodology
- Easier analysis of end product (MS/MS)
- Improved specificity
Principle of method

- Plate fibroblasts into multi-well plates
- Settle overnight
- Add substrate
 - Fatty acid plus carnitine
 - e.g. 200\(\mu\)m/L palmitate, 400 \(\mu\)m/L carnitine
- Incubate for 72-96 hours
- Analyse acylcarnitine profile of medium on MS/MS
- Adjust for fibroblast protein concentration
Data from 45 patient cell lines showing abnormal acylcarnitine species in each of 9 fatty acid oxidation disorders / phenotypes

(Controls n = 146)
Acylcarnitine profiling in fibroblasts from MK

- No increase in any acylcarnitine species
 - No abnormality of β-oxidation spiral!

- ?? Defect of getting long-chain acylcarnitine into mitochondria
 - i.e. CPT I, CPT II, CAT
Data from 45 patient cell lines showing abnormal acylcarnitine species in each of 9 fatty acid oxidation disorders / phenotypes

(Controls n = 146)

CPTII & CAT have high C16 & low C5/C16 ratio
% residual activity for M/P/O for various FAOD’s

Pattern recognition in FAO

Carnitine cycle defects

CPTI

FAO Disorders

Myristate
Palmitate
Oleate
<table>
<thead>
<tr>
<th>Acylcarnitine</th>
<th>Patient MK</th>
<th>Controls (n=70) Mean ± 2 SD</th>
<th>Positive CPTI controls N=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16</td>
<td>0.06</td>
<td>0.15 – 1.25</td>
<td>0.07; 0.15; 0.08; 0.16</td>
</tr>
<tr>
<td>C5/C16 ratio</td>
<td>15.5</td>
<td>0.13 – 1.01</td>
<td>6.1; 3.6; 5.1; 2.3</td>
</tr>
</tbody>
</table>
Family of MK

- Subsequent baby tested positive for CPTI
- Low long-chain fat diet
- MCT supplementation with ↑ carbohydrate
- Avoidance of fasting
- Emergency regimen when unwell

- Infant doing fine!
Advantages of fibroblasts

- Easy to obtain and grow
 - Post mortem, repeat assays, storage,

- Less subject to secondary factors
 - deterioration, nutrition, clinical state

- Flux assays (intact cells)
 - overall measure of many pathways using labelled substrates

- Specific enzyme assays e.g. CPTI, CPTII, CAT
Acknowledgements

Clinical Chemistry
Shirley Clark
Farzana Ghoni
Helen Hind
Nigel Manning
Jenny Watkinson
Kate John
Ed Smith
Camilla Scott
Melanie Downing
Joanne Croft
Roy Talbot
Claire Hart
Jim Bonham

Histopathologists
Marta Cohen
David O’Neill