DNA Analysis in Glycogen storage disease

Nick Beauchamp PhD
Sheffield Diagnostic Genetics Service, Sheffield Children’s NHS Foundation Trust
14th October 2010
Glycogen Synthesis and Breakdown

Glycogen Synthase

- Type 0
- Type IV

UDPGlucose

- Uridine
- Diphosphoglucone
- Pyrophosphorylase

Glucose

- Glucokinase

Glycogen

- Branching Enzyme

Phosphorylase

- Type I
- Type III
- Type V and VI
- Type IX

Glycogen Synthesis and Breakdown

- Alpha-1,4
- Alpha-1,6

Glucose 1-P

- Phosphoglucone Isomerase

Glucose 6-P

- G-6-Phosphatase

Glucose

- Debranching Enzyme

Limit dextrin
Glycogen Synthesis and Breakdown

Glycogen Synthase

UDPGlucose

Glucose 1-P

Alpha-1,4

Alpha-1,6

Glycerogen

Branching Enzyme

Phosphorylase Kinase

Limit dextrin

Debranching Enzyme

UDP Glucose

Glucose

Uruline

Diphosphoglucone

Pyrophosphorylase

Phosphoglucone Isomerase

Glucokinase

G-6-Phosphatase

Type Ia

G6PC gene

Type Ib

SLC37A4 gene
GSD Type I

- First described by von Gierke in 1929
- Approx 1 in 58,000 newborns affected
- Autosomal recessive
- Classification:
 - Ia: Deficiency of glucose-6-phosphatase enzyme
 - Ib/Inon-a: Deficiency of glucose-6-phosphate transporter
- Approx 10% of Type 1 cases are Ib
Mutations identified

• Type Ia
 – *G6PC* gene
 • 5 exons, 13 kb on Chr 17q21
 – >80 mutations reported
 – Common changes:
 • p.Arg83Cys - 32%
 • p.Gln347X - 22%
G6PC gene mutations

Mutations identified

- **Type Ib**
 - *SLC37A4* gene
 - 9 exons, 6 kb on Chr 11q23.3
 - >65 mutations reported
 - Common changes:
 - p.Leu348fs - 28%
 - p.Gly339Cys - 19%
SLC37A4 gene mutations

Genetic Analysis in GSD type I

- Avoids liver biopsy
- Confirms diagnosis - type Ia versus Ib
- No clear genotype/phenotype correlation
Glycogen Synthesis and Breakdown

Glycogen Synthase
- UDPGlucose
- Alpha-1,6

Glycogen
- Alpha-1,4

Branching Enzyme
- Uridine Diphosphoglucose Pyrophosphorylase

Debranching Enzyme
- G-6-Phosphatase

Phosphorylase Kinase
- Type V and VI
- PYGM and PYGL genes

Limit dextrin
- Phosphorylase

Phosphoglucone Isomerase
GSD Type V

• Also known as McArdle Disease
• Deficiency of muscle glycogen phosphorylase
 – cleaves α-1,4-glucosidic bonds
• Autosomal recessive
 – $PYGM$ gene
 • 20 exons, 40kb on Chr 11q12-q13.2
• 2.5% of GSDs
Mutations of the *PYGM* gene

- **Common mutations:**
 - p.Arg50X - 32% - 81% of alleles
 - p.Gly205Ser - 0% - 10% of alleles

- **Other mutations**
 - >85 rare mutations

- **Non-sense mediated mRNA decay**
Mutations of the *PYGM* gene
GSD Type VI

- Also known as Hers Disease
- Deficiency of liver glycogen phosphorylase
- Autosomal recessive
 - *PYGL* gene
 - 20 exons, 40kb on Chr 14q21-q22
- Rare
GSD Type VI - Reported Patients

- 11 patients published with 17 mutations
- Majority are missense mutations
 - Clustered in exons 16 and 17

- p.R399X
- [c.1964_1969inv6;c.1969+1_+4delGTAC]
- p.Q13P
- p.V456M
- p.R491C
- p.D634H
- p.K681T
- p.S675L
- p.N632I
- p.E673K
- c.1620+1G>A
- c.1768+1G>A
- c.529-1G>C
- p.M1?
- p.G233D
- p.N339S
- p.N377K
- p.N632I
- p.D634H
- p.E673K
- p.K681T
- p.S675T
GSD Type VI - Screened Patients

- All published patients and 16 patients from clinical service
Glycogen Phosphorylase

Glycogen + $P_i \rightarrow$ Glycogen + Glucose-1-P
Glycogen Synthesis and Breakdown

- **Glycogen Synthase**
 - UDPGlucose
 - Glucose
 - Uridine Diphosphoglucose Pyrophosphorylase

- **Glycogen**
 - Alpha-1,6
 - Alpha-1,4

- **Glucose 1-P**
 - Phosphoglucone Isomerase

- **Glucose 6-P**
 - G-6-Phosphatase

- **Phosphorylase Kinase**
 - PHKA2 gene
 - PHKG2 gene
 - PHKB gene

- **Limit dextrin**
 - Debranching Enzyme

- **Phosphorylase**
 - Type IX
Phosphorylase kinase

• Four copies of each of α, β, γ, δ subunits

X-linked GSD Type IX

• Deficiency of liver α subunit (PHKA2 gene)
• Clinical symptoms
 – Hepatomegaly
 – Liver dysfunction
 – Hypoglycaemia
 – Growth retardation
 – Elevated blood cholesterol, triglycerides
 – Mild muscle hypotonia in some cases
X-linked GSD Type IX

- X-Linked Glycogenosis type 1 (XLG1)
 - Reduced PHK activity in RBC and liver

- X-Linked Glycogenosis type 2 (XLG2)
 - Reduced PHK activity in liver only
Case 1

- Symptoms present at 1 year, diagnosed type VI at 7 years
 - Hepatomegaly
 - Normal fasting
 - Raised transaminases
 - Growth retardation
 - WBC Total GP: 1.4 (NR: 1.0-3.2 μmol Pi/mg alb/h)
 - WBC Activated GP: 0.3 (NR: 0.5-2.2 μmol Pi/mg alb/h)
 - RBC PHK: 21.8 (NR: 8.6-45 μmol Pi/min/g Hb)
- No mutation identified in *PYGL* gene – Not GSD type VI
- Analysis of *PHKA2*: p.Arg182Cys – X-linked GSD Type IX
Autosomal GSD Type IX

- Autosomal recessive
- Rarer than X-linked form
- Deficiency of either β or liver γ subunit
- Mutations in $PHKB$ gene
 - 33 exons, 238kb on Chr 16q12-q13
- or $PHKG2$ gene
 - 10 exons, 9kb on Chr 7p11.2
Autosomal GSD Type IX

- **Deficiency of β subunit**
 - Very mild symptoms
 - Hepatomegaly
 - Hypoglycaemia in rare cases with prolonged fasting
- **Deficiency of liver γ subunit**
 - Severe hepatomegaly
 - Liver dysfunction
 - Recurrent hypoglycaemia
 - Growth retardation
 - Fibrosis of the liver leading to cirrhosis and adenomata
<table>
<thead>
<tr>
<th>Exon</th>
<th>Mutaton</th>
<th>Predicted Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>c.306-2A>G</td>
<td>Deletion of exon 5</td>
</tr>
<tr>
<td>8</td>
<td>7574 bp deletion</td>
<td>Deletion of exon 8</td>
</tr>
<tr>
<td>14</td>
<td>c.1257T>A</td>
<td>p.Y419X</td>
</tr>
<tr>
<td>14</td>
<td>c.1275dupA</td>
<td>p.N422KfsX2</td>
</tr>
<tr>
<td>14</td>
<td>c.1285C>T</td>
<td>p.R429X</td>
</tr>
<tr>
<td>20</td>
<td>c.1827G>A</td>
<td>p.W609X</td>
</tr>
<tr>
<td>27</td>
<td>c.2337-2A>C</td>
<td>Deletion of exon 27</td>
</tr>
<tr>
<td>31</td>
<td>c.2896-1G>T</td>
<td>c.2896_2911del16</td>
</tr>
<tr>
<td>3</td>
<td>c.131C>T</td>
<td>p.R44X</td>
</tr>
<tr>
<td>3</td>
<td>c.144delC</td>
<td>p.H48QfsX5</td>
</tr>
<tr>
<td>3</td>
<td>c.265dupC</td>
<td>p.H89PfsX14</td>
</tr>
<tr>
<td>4</td>
<td>c.277delC</td>
<td>p.L93SfsX18</td>
</tr>
<tr>
<td>4</td>
<td>c.326+1G>A</td>
<td>Deletion of exon 4</td>
</tr>
<tr>
<td>9</td>
<td>c.900G>A</td>
<td>p.W300X</td>
</tr>
</tbody>
</table>
Genetic Analysis

- Confirms the diagnosis
- Distinguishes GSD type VI from GSD type IX - XLG2
- Identifies the subunit deficient and thus prognosis
- Identifies the inheritance
 - Allowing family studies
Glycogen Synthesis and Breakdown

- **Glycogen Synthase**
 - UDPGlucose
 - Glucose
 - Uridine Diphosphoglucose
 - Pyrophosphorylase

- **Branching Enzyme**
 - Alpha-1,6

- **Phosphorylase Kinase**
 - Limit dextrin

- **Debranching Enzyme**
 - Type III AGL gene

- **Phosphorylase**

- **Guanosine Diphosphatase**
 - G-6-Phosphatase

- **Glucose 1-P to Glucose 6-P**
 - Phosphoglucone Isomerase

- **Glucose**
 - Glucokinase
GSD Type III

• Also known as Cori or Forbes Disease
• Deficiency of glycogen debrancher enzyme
• Autosomal recessive
• Four subtypes:
 – Type IIIa (~85% of patients)
 • Enzyme deficient in both liver and muscle
 – Type IIIb (~15% of patients)
 • Enzyme deficient in liver
 – Type IIIc
 • Loss of glucosidase activity
 – Type IIIId
 • Loss of transferase activity
GSD Type III

- **AGL gene**
 - 35 exons, 85 kb on Chr 1p21
- **Type IIIa**
 - Majority (65%) of mutations are nonsense, frameshift or splice site mutations
 - Common changes
 - Rare changes
 - 118 mutations reported
- **Type IIIb**
 - Exon 3 nonsense mutations
 - c.16C>T, p.Gln6X,
 - c.18_19delGA, p.Gln6HisfsX20
 - c.22C>T, p.Arg8X
GSD Type III – AGL mutations

GSD Type III

Genetic analysis

– Allows distinction between type IIIa and IIIb
– Some indication of severity
 • eg c.4260-12A>G is ‘mild’ mutation
– Correlates with leukocyte enzyme assay
Cases 2 and 3

- Patient, aged 5 years
- Permanent hepatomegaly
- Fasting <3 hours
- Permanent CK elevation
- Cardiomyopathy
- Fatigue not observed

- Leuk Debrancher: 5.7
 Normal range: 26.8-105 nmol glu/mg protein/hour
- RBC Glycogen: 565
 Normal range: 5.7-135 µg/g Hb
- p.Arg408X homozygote

- Patient, aged 20 years
- Hepatomegaly till 16 years
- Normal feeding
- Normal CK
- No Cardiomyopathy
- Periodic fatigue

- Leuk Debrancher: 0.69
 Normal range: 26.8-105 nmol glu/mg protein/hour
- RBC Glycogen: 726
 Normal range: 5.7-135 µg/g Hb
- p.Arg8X and c.4260-12A>G
Glycogen Synthesis and Breakdown

- Branching Enzyme
 - Type IV
 - GBE gene

- Glycogen Synthase
 - UDPGlucose
 - Glucose
 - Uridine Diphosphoglucone Pyrophosphorylase
 - Phosphoglucone Isomerase
 - Glucokinase

- Glucose 1-P
 - Alpha-1,6
 - Alpha-1,4

- Glucose 6-P
 - Phosphoglucone Isomerase

- Glycogen

- Limit dextrin
 - Debranching Enzyme

- Phosphorylase
 - Kinase

- G-6-Phosphatase
 - Glucose
GSD Type IV

- Also known as Anderson Disease
- Deficiency of glycogen branching enzyme
- Autosomal recessive
 - $GBE1$ gene
 - 16 exons, 262 kb on Chr 3p14
- Rare
GSD Type IV

- 20 Patients reported
 - 34 unique mutations
 - Some phenotype/genotype correlation
 - Wide range of phenotypes
 - Congenital presentation to polyglucosan body disease

- Genetic analysis allows prenatal diagnosis
 - Identification of carriers
GSD Type 0

- Deficiency of glycogen synthase
- Autosomal recessive
 - GYS2 gene
 - 16 exons, 69kb on Chr 12p12.2
- Rare
GSD Type 0

- Clinical symptoms
 - Ketotic hypoglycaemia
 - Post-prandial hyperglycaemia and hyperlactataemia
 - Low activity in liver biopsy
- Molecular analysis avoids liver biopsy
GYS2 Mutations

New mutations

N39S
72 base deletion
R5X
G+1/T Splice
Q183X
A339P
G-1T/CT
R246X
T445M
R582K
D668N

Previously reported mutations

M491R
S483P
P479Q
H446D

Glycogen Synthesis and Breakdown

- **Glycogen Synthase**
- **UDP-Glucose**
- **Glucose 1-P**
- **Glucose 6-P**
- **G-6-Phosphatase**
- **Pyrophosphorylase**
- **Branching Enzyme**
- **Alpha-1,4**
- **Alpha-1,6**
- **Phosphoglucomutase**
- **Glucokinase**
- **Phosphorylase Kinase**
- **Phosphorylase**
- **Limit dextrin**
- **Debranching Enzyme**

Key Reactions:
- Conversion of UDP-Glucose to Glucose 1-P
- Conversion of Glucose 1-P to Glucose 6-P
- Conversion of Glucose 6-P to Glucose 1-P
- Conversion of Glucose 1-P to UDP-Glucose

Enzymes:
- Glycogen Synthase
- UDP-Glucose Pyrophosphorylase
- Glucokinase
- Phosphoglucomutase
- Phosphorylase Kinase
- Phosphorylase
- Debranching Enzyme
- G-6-Phosphatase
Glycogen Synthesis and Breakdown

Uridine Diphosphoglucose Pyrophosphorylase
Glucose → Glucose 1-P → Glucose 6-P
Glucokinase
Phosphoglucone Isomerase

Alpha-1,4
Debranching Enzyme

G-6-Phosphatase
Glucose
Glycogen Synthesis and Breakdown

- Uridine Diphosphoglucose Pyrophosphorylase
- Glucokinase
- Phosphoglucone Isomerase
- Type VII
- Phosphofructokinase
- Fructose-1,6-bisphosphatase
- FBP1 deficiency

- Glucose 1-P
- Glucose 6-P
- Fructose 6-P
- Fructose-1,6-bisphosphate
- Pyruvate
- G-6-Phosphatase
- Glucose Phosphate Isomerase
- Alpha-1,4 Debranching Enzyme
GSD Type VII

- Also known as Tarui disease
- First identified in 1965
- Deficiency of muscle phosphofructokinase
 - Homo-tetramer
 - Three isoforms muscle, liver and platelet types
- Autosomal recessive inheritance
 - $PFKM$ gene
 - Located on 12q13
 - 24 exons covering 30kb
- Rare
GSD Type VII

- Type VIIa ‘Classical’
 - Exercise intolerance
 - Muscle cramps and pain after exercise
- Type VIIb ‘Late onset’
 - Mean age of onset 55 years
 - Progressive fatigue and weakness
- Type VIIc ‘Infantile’
 - Floppy and hypotonic babies
 - Die within 1 year
- Type VIIId ‘Haemolytic’
 - No muscle symptoms
 - Severe haemolysis
PFKM gene and Mutations

- 15 mutations reported
- Genetic analysis
 - ? avoid muscle biopsy
 - Prenatal diagnosis

Glycogen Synthesis and Breakdown

- **Glucose**
 - Glucokinase
- **Glucose 1-P**
 - Phosphoglucone Isomerase
 - Alpha-1,4
 - Alpha-1,6
- **Glucose 6-P**
 - G-6-Phosphatase
 - Glucose Phosphate Isomerase
- **Fructose 6-P**
 - Phosphofructokinase
 - Fructose-1,6-bisphosphatase
- **Fructose-1,6-bisphosphate**
- **Pyruvate**

- **Debranching Enzyme**
 - Uridine Diphosphoglucone Pyrophosphorylase

- **FBP1 deficiency**
Fructose-1,6-bisphosphatase

• Clinical Symptoms
 – Hypoglycaemia
 – Lactic acidosis
 – Glyceroluria
 – Hepatomegaly

• Autosomal Recessive
 – $FBP1$ gene
 • 7 exons, 31 kb on Chr 9q22.3
FBP1 Gene Mutations

- 18 point mutations
- Exon 1 deletion
Fructose-1,6-bisphosphatase

• Molecular analysis
 – Avoids liver biopsy
 – Diagnosis when enzymology not available

• No clear genotype/phenotype correlation
Case 4

- Presented at 2 years with hypoglycaemic coma following intercurrent illness
 - Mild hepatomegaly
 - Slight hypertransaminasemia (135 U/l) with lactic acidosis
 - Lactic aciduria with ketonuria and slight excretion of glycerol
 - Normal FBPase activity in leukocytes
 - Decreased activity of FBPase in liver (2.1, NV: 22 and 26 mol/min/mg ptn)
 - Decreased glycogen content in liver (15.1 mg/g of tissue; NR: 20-50).

- Genetic analysis of FBP1 gene:
 - c.618delA, p.G207fs homozygote
GSD Type II

- Also known as Pompe Disease, acid α-glucosidase deficiency or acid maltase deficiency
- Autosomal recessive
- Lysosomal storage disease - accumulation of glycogen in all tissues
- 1 in 40,000 live births
- Treatment - Enzyme replacement therapy Myozyme (Genzyme)
GSD Type II

• Infantile onset (1 month)
 – Cardiomegaly, cardiomyopathy, hepatomegaly, weakness and hypotonia
 – Death due to cardiorespiratory failure in first year

• Late or adult onset (20-60 years)
 – Slowly progressive myopathy affecting skeletal muscle
 • Involvement of diaphragm and accessory muscle of respiration leads to respiratory failure
 – Cardiomyopathy generally absent

• Symptoms correlate with residual enzyme activity
GAA gene Mutations

• Common Mutations
 – c.-45T>G - Mild phenotype
 – c.525del - severe phenotype

• Rare mutations
 – >150 listed on mutation database at: http://www.pompecenter.nl/
<table>
<thead>
<tr>
<th>Type</th>
<th>0</th>
<th>Ia</th>
<th>Ib</th>
<th>III</th>
<th>IV</th>
<th>VI</th>
<th>IXauto</th>
<th>IXx</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Samples</td>
<td>53</td>
<td>39</td>
<td>25</td>
<td>75</td>
<td>15</td>
<td>39</td>
<td>32</td>
<td>90</td>
<td>368</td>
</tr>
<tr>
<td>Confirmed Diagnosis</td>
<td>3</td>
<td>25</td>
<td>14</td>
<td>53</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>55</td>
<td>179</td>
</tr>
<tr>
<td>Unconfirmed Diagnosis</td>
<td>50</td>
<td>11</td>
<td>7</td>
<td>19</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>23</td>
<td>146</td>
</tr>
<tr>
<td>Investigated Further</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>22</td>
<td>9</td>
<td>27</td>
<td>85</td>
</tr>
<tr>
<td>Diagnosis Changed</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>2</td>
<td>12</td>
<td>43</td>
</tr>
</tbody>
</table>

0									1
Ia									2
Ib									3
III									1
VI									1
IX X-linked									2
IX Autosomal									1

			PHKG2		PHKB	PHKG2	PHKB	PHKB
0								
Ia								
Ib								
III								
VI								
IX X-linked								
IX Autosomal								
Conclusions

• Genetics analysis can:
 – Provide a definitive diagnosis
 – Replace liver or muscle biopsy
 – Allow carrier testing and prenatal diagnosis
 – Change diagnosis and inheritance patterns
 – In some cases indicate prognosis